Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 19974-19985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368300

RESUMO

Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd3+) from aqueous solutions. The recovery of Nd3+ that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the ß-cyclodextrin (ß-CD) nanosponges had uniform distribution with regular and smooth shapes. ß-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g-1) than FPPW (2.50 mmol g-1), which could impact the Nd3+ adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for ß-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. ß-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. ß-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, ß-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd3+ from aqueous matrices.


Assuntos
Solanum tuberosum , beta-Ciclodextrinas , Neodímio , Adsorção , Polímeros , beta-Ciclodextrinas/química , Água/química , Física , Cinética
2.
Environ Sci Pollut Res Int ; 31(7): 10417-10429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200192

RESUMO

There is a growing need to develop new strategies for rare earth element (REE) recovery from secondary resources. Herein, a novel approach to utilize biogenic silica (from rice husk) and metakaolin was employed to fabricate magnetic geopolymer (MGP) by incorporating metallic iron. The fabricated MGP adsorbent material was used to uptake Ce3+, La3+, and Nd3+ from synthetic solutions and real phosphogypsum leachate in batch and column modes. The MGP offers a negatively charged surface at pH above 2.7, and the uptake of REEs rises from pH 3 to 6. The kinetic study validated that the kinetics was much faster for Nd3+, followed by La3+ and Ce3+. A thermodynamic investigation validated the exothermic nature of the adsorption process for all selected REEs. The desorption experiment using 2 mol L-1 H2SO4 as the eluent demonstrated approximately 100% desorption of REEs from the adsorbent. After six adsorption-desorption cycles, the MGP maintained a high adsorption performance up to cycle five before suffering a significant decrease in performance in cycle six. The effectiveness of MGP was also assessed for its applicability in recovering numerous REEs (La3+, Ce3+, Pr3+, Sm3+, and Nd3+) from real leachate from phosphogypsum wastes, and the highest recovery was achieved for Nd3+ (95.03%) followed by Ce3+ (86.33%). The operation was also feasible in the column presenting suitable values of the length of the mass transfer zone. The findings of this investigation indicate that MGP adsorbent prepared via a simple route has the potential for the recovery of REEs from synthetic and real samples in both batch and continuous operations modes.


Assuntos
Sulfato de Cálcio , Metais Terras Raras , Oryza , Fósforo , Adsorção , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...